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The strength of vortex and swirling core flows 

By B. R. MORTON 
National Center for Atmospheric Research, Boulder, Coloradot 

(Received 22 January 1969) 

This note presents a discussion of the roles of axial momentum flux, flow force, 
angular momentum flux and circulation in determining the strength and hence 
characterizing the structure of such narrow rotating axisymmetric core flows 
as swirling jets, vortex jets, sink vortices and vortex wakes. The salient (though 
sometimes neglected) features of these core flows are that perturbation pressure 
plays an essential role both in the coupling of axial and azimuthal velocity fields 
and in the transmission of force along the core, and that flux of angular momen- 
tum is invariant only along cores with zero gross circulation. A number of existing 
solutions are brought into relationship by the discussion, including Long’s 
similarity solution for draining vortices and Reynolds’ dimensional treatment of 
swirling wakes. 

Introduction 
Reynolds (1962), in a note on similarity in swirling turbulent core flows, has 

demonstrated the role of dimensional arguments for deducing asymptotic 
structures of swirling turbulent wakes. However, several obscurities remain in 
his paper because of the undue brevity of treatment, including among other 
factors the assertion that a swirling wake is characterized by its fluxes of axial 
and angular momentum (supposed to be flow invariants by Reynolds), the 
general decoupling of axial and azimuthal flow associated with his disregard of 
the pressure field, the validity of his regime of ‘ control by angular momentum ’ 
in which the ratio of axial to angular momentum flux is locally small, and the 
whole role of circulation measured in circuits linking the core. Many of these 
difficulties can be clarified by a discussion of narrow rotating axisymmetric core 
flows based on integrated forms of the equations and on order-of-magnitude 
arguments. The results obtained from this discussion must have been known 
to the classic hydrodynamicists but are not common in the literature and 
appear to have escaped the attention of a number of recent workers on con- 
centrated vortices, particularly those concerned with atmospheric applications. 
The following discussion is given primarily for laminar flows, although in most 
cases the extension to turbulent core flows may be seen without difficulty. 

The strength of a j e t  produced in an extensive uniform environment otherwise 
at  rest is normally taken as the flux of axial momentum from its source, as this 
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is the only quantity invariant under transport by the jet; and since dynamic 
pressure variations are small in laminar jets (and balanced in turbulent jets) apart 
from some neighbourhood of the source, it is also the effective force of the jet. 
The wake formed behind a compact body moving in an otherwise still environ- 
ment is also characterized by axial momentum flux equal and opposite to the 
drag force on the body, or in the case of a fixed body in a uniform stream by 
flux of momentum deficit equal to the drag. 

The principal flow function for both jets and wakes might usefully be regarded 
as the transmission of force through the fluid. Indeed, perhaps the best definition 
for a wake is that of the disturbance flow serving to transmit drag-force reaction 
from a moving body through the surrounding fluid and ultimately to the 
boundaries. This definition encompasses both the usual ‘viscous wakes ’ behind 
bluff bodies and also ‘wave wakes’ in cases where a body experiences wave- 
making resistance, as on a free liquid surface or in a stratified rotating fluid; 
wave wakes will not be considered further here. It is instructive to regard the 
transmission of flow force as the prime function of a variety of core flows generated 
effectively from a source, sink or doublet, where by core flow we imply a narrow 
flow subtending a small angle of spread from the neighbourhood of its virtual 
origin. I n  discussing the characterization of such flows as swirling jets, vortex 
jets, sink vortices and vortex wakes we shall in each case define the flow strength 
as the conserved force quantity or quantities or other invariant of the flow. We 
may note that while force is often conserved in narrow flows in otherwise un- 
disturbed environments, mass conservation typifies the normal sink flow and 
the idealized (though almost unrealizable in practice) symmetrical source flow. 

As a basis for discussion we require integrals of the flow equations and orders 
of magnitude of the dependent variables for regions of settled flow excluding the 
immediate neighbourhood of the source, and we shall deal first with laminar 
core flows produced from fixed sources in extensive environments a t  rest a t  
infinity. 

Laminar cores in a still environment 
The equations for steady, incompressible, axisymmetric, laminar flows re- 

ferred to cylindrical polar co-ordinates ( r ,  0, z )  with origin fixed in position relative 
to the source, and with velocity components (u ,v ,w)  tending to zero in the 
relatively undisturbed fluid far from the source, take the forms 

i a  aW 

r ar 
-- (ru) + = 0, 

W U 
R 2 ’  

N -  - 
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(3) 

where capital letters represent characteristic magnitudes for the variables in 
a slice of the core distant approximately Z from the virtual source and of ‘core 
radius’ R, suitably defined, and appropriate orders of magnitude have been 
entered under the terms of the equations. Boundary conditions on the flow in 
a plane of section of the core are: 

} ( 5 )  
at r = 0, u = 0, v = 0, wfinite, aw/ar = 0, pfinite, a p p  = 0; 

as r+m, u+O, v + O ,  w+O,  p + O ;  

where p is the disturbance pressure due to the core flow. We note that it is not 
possible at  this stage to impose general requirements on the velocity moment ru 
as r - f c o .  

Commonly observed vortex and swirling core flows are narrow, with semi- 
angle of spread R / Z  = a + 0.1 < 1, and the axial viscous diffusion is in such 
cases negligible relative to lateral diffusion. From (1) 

- aW; RW 
U - -  

2 

and from (3) either the dominant viscous and inertial forces are in balance with 

R R W  
aRe = -- - 1, 

Z V  
(7) 

in which case the flow is likely to be laminar, or the Reynolds number 

Re = R W / v  $ a-l> 1 

is large and the flow will be turbulent, and for the present outside our attention. 
From (4) for laminar flows, either (i) P/p enters directly into the inertial-viscous 
balance with 

or (ii) the axial pressure gradient plays a minor role in the equation and 

P - pw2, @a) 

Finally, from (2)) the 
viscous forces is 

hence in case (i) with 
gradient force balance 

P < pwz.  ( 8 b )  

ratio of inertial to centrifugal to pressure gradient to 

P N p W2 equation (2) reduces to a centrifugal-pressure 

v -  w. (9a) 
with 
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For V /  W N 1 the pressure perturbation is due directly to the azimuthal flow, 
but provides strong coupling with the axial flow. As V /  W decreases, the dynamical 
role of the pressure declines progressively until V N U or smaller, after which 
P N p U 2  and is independent of V ,  with complete decoupling of the axial and 
azimuthal velocity fields; such weakly rotating cores merely provide forced 
convection of angular momentum without significant modification of the basic 
axial-radial flow. Slightly different order-of-magnitude arguments apply for 
swirling and vortex wakes, but these do not affect the conclusion that V N W as 
a result of close pressure coupling for strong rotation. 

Rearrangement of relations (6)-(9) yields the scales: (i) for strong rotation 

and (ii) for the weakly rotating case 

with V to be determined from the rotation structure imposed on the core. In  
order fully to determine the structure of the core flow in terms of the single 
independent variable Z one further relationship is needed, and this can be ob- 
tained from a strength relation for the flow representing the dominant effect of 
the source. 

The gross transport properties of narrow core flows may be derived without 
further approximation by integrating the equations of motion over a plane 
section z = constant. From (l) ,  

where (pru), = limit,,(pru); thus the axial rate of increase in mass flux is 
equal to the rate of mass entrainment or radial inflow from large distances. 

Integration of (2) provides a relationship for the pressure defect on the axis, 

where wo(x) = w (r=O,z). Using the scales derived above, this reduces for the 
case of strong rotation to 

with relative error of order a2, corresponding to a radial pressure gradient- 
centrifugal acceleration balance; while for weak rotation most terms survive, but 
pressure variations as a whole are small (P w pa2W2) and may be neglected. 
We note that the pressure p ,  -po on the axis of a rotating core embedded in an 
externally still environment at  uniform pressure pm is constant only in a cylin- 
drical field v = v(r) of azimuthal velocity, and that there will always be axial- 
pressure gradients (with corresponding axial velocities) in rotating cores ex- 
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hibiting axial development of the azimuthal velocity field v = v(r ,  2). Thus axial 
pressure gradients are the rule in all swirling flows suffering progressive lateral 
spread by either viscous or turbulent diffusion with increasing axial distance 
from the source. 

Equation (3) yields the azimuthal momentum integral, 

dz <J*pr(vw-v;)rdr 0 = -(pr2uv),+ 

showing that the axial rate of change in the flux of angular momentum (due 
primarily to convection, and in negligible proportion a/Re to axial diffusion) is 
the result of an effective torque due to entrainment of azimuthal momentum 
at infinity and to the moment of the viscous stress at infinity. 

Finally, from equation (4)) $Jr rdr = -(pruw),+ 

Contributions to the force transmitted by the flow from the direct flux of axial 
momentum, the disturbance pressure and the axial diffusion of momentum are 
in the ratio 1 : (P/pW2):  a2; hence the contribution from viscous diffusion is always 
negligible and that from pressure thrust is important in strongly rotating but 
negligible in weakly rotating cores. In strongly rotating cores the pressure thrust 
is of comparable importance to the momentum flux, and the axial pressure 
gradients normally formed result in a progressive transfer of force between the 
momentum flux and pressure fields. In such cases the $ow force? per unit section, 

f = PW2+P, 

plays a more fundamental role than the simple momentum flux. Equation (13) 
now has the direct interpretation that in the absence of body forces the axial 
changes in flow force are due to entrainment of ambient axial momentum and to 
outer viscous stress. 

Certain general remarks can now be based on (lo)-( 13) provided that estimates 
can be obtained for (ru), and (rv),. All viscous (or turbulent) axial core flows 
exhibit entrainment in the sense that neighbouring ambient fluid gains axial 
momentum by diffusion, is accelerated into the core flow, and (in a uniform still 
environment) is replaced by more distant ambient fluid driven inwards by the 
weak external pressure field generated by acceleration into the core. Thus the 
asymptotic effect of the core flow at large radial distances is effectively that of 
some distribution of sinks along the axis of symmetry, and the asymptotic radial 
inflow velocity in an otherwise still, uniform environment must be O(r-l) ,  and 
(ru), is finite and generally a function of x .  Taylor (1958) has previously utilized 

t There seems to be little uniformity in the use and naming o f f ,  though it is important 
in swirling flows, rotating systems and stratified flows (where an analogous flow force 
involves the perturbation pressure associated with density perturbations). The term 
‘momentum flux’ is sometimes used for pw2 and sometimes for pwa + p ,  but there is a case 
for calling pw2+p the flow force and pwa the momentum flux. The term ‘flow force’, 
which enters naturally here, has been used recently by Benjamin (1962). 
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this approach in calculating some entrainment flows induced around jets and 
plumes. 

The asymptotic value Zn(rv), is precisely the circulation I<,, and is a measure 
of the net axial vorticity of the core flow. At this stage we might note that the 
flows under consideration have small angles of spread and are of boundary-layer 
(core) type. Thus r has more or less the character of an inner variable, and r --f co 
does not imply r / z  -+ co, but merely that r is sufficiently large to include all of 
the core region. While K ,  must be independent of z in a still environment, i t  
may, over limited regions, vary with axial distance in the case of a streaming 
outer flow, as in the rolling up of a trailing vortex sheet above a swept wing to 
form a trailing vortex core with progressively increasing circulation (Hall 1966). 
It is essential to distinguish between the flux of angular momentum in the core 
and the circulation around the core. A swirling jet generated by release from 
an orifice of fluid with both axial and angular momentum will have circulation 
K ( r )  in circular paths steadily increasing with radius r to a maximum KnL(rm), 
and then decreasing to zero for some r,(z) > rm(z) ;  the vorticity will be of opposite 
sign in 0 < r < r, and r L  < r < ra. 

It will be convenient to divide rotating core flows into swirling flows with 
K ,  = 0 and vortex flows with K ,  =k 0. We shall consider some particular cases. 

The laminar j e t  

-27r(ru), = K ( z ) ,  (rv), = 0, w, = 0, where K ( z )  > 0 corresponds externally to  
the volume flow per unit axial length into an axial distribution of sinks with 
strength, q(z) ,  decreasing slowly with increasing z. The mass flux along the core, 

increases monotonically with z. The pressure contribution to the flow force may 
be neglected as P N pU2 N a2W2 < W2,  and it follows from (13) that the momen- 
tum flux is constant, 

where P is to be taken as the strength of the jet. From (14), R W  N (F/p)B, and 
the jet is characterized by the local (and over-all) Reynolds number 

RWIV N (F/pv2)*; 

the asymptotic structure of the flow is now determined as 

R N (F/pv2)-I 8, U - (F /~v ' )*  vZ-', W N ( F / p 2 )  YZ-1, P N FZ-2, 

and the Reynolds number (F/pv2)B must be large for a narrow core a < 1, so that 
the jet will normally be turbulent. Solutions for the laminar jet are well known, 
and were given originally by Schlichting ( 1933) in boundary-layer approxima- 
tion, and by Squire (1951, 1952) without approximation. 
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The viscous line vortex 

u = 0, 2n(rw), = K,, w = 0, is a two-dimensional flow with vorticity com- 
ponents 

and velocity components 

arising from the (hypothetical) release at time t = 0 of a concentrated line vortex 
on the z axis. This is a time- rather than space-dependent flow, but must be 
included here as the archetype of all core flows with circulation. The solution 
(Lamb 1932, p. 591)  is often givenin terms of vorticity directlyfrom the analogous 
problem of heat conduction from an instantaneous line source, but this must not 
be allowed to obscure the fact that the changing velocity distribution associated 
with spreading of the vorticity field is due to a stress distribution. It is readily 
shown that the fluid contained in a disk of unit thickness normal to 02 and of 
radius r = R has: 

circulation K,( 1 - e-R2/4vt), I 
kinetic energy i 1 

- pK:{log R + y -log 2 + O(e-”/R)), 
877 

angular momentum +pK,{R2 - 414 1 - e-R2/bt)). I 
The kinetic energy of an infinite disk of fluid is logarithmically infinite; and its 
angular momentum is algebraically infinite but decreases with time at  finite 
constant rate, from which it follows that a steady retarding torque or couple 
acts on the fluid at  infinity. The moment of the tangential stress acting at  
distance r is 

thus the retarding torque at infinity is transmitted inwards by a continuous 
distribution of retarding tangential stress which produces the progressive re- 
tardation and spreading out of the central azimuthal velocity field. 

Single concentrated line vortices cannot be generated because of their infinite 
energy and angular momentum; however, a pair of distinct line vortices with 
equal and opposite strengths f K and separation 2d has finite kinetic energy, 
zero net angular momentum and zero net circulation. Such vortex pairs, often 
with one member an image vortex, can be generated readily but in normal 
circumstances are found to decay rapidly by the growth of axial flow. Termina- 
tion of the individual vortices at  a rigid boundary is impossible as the balanced 
centrifugal pressure field of the vortex is disrupted in the end-wall boundary 
layer, so that ambient fluid is driven into the low-pressure vortex core which 
fills rapidly along its whole length by axial inflow. A tolerable estimate for the 
decay time of a straight line vortex produced between the side walls of a tank of 
water can be obtained using the axial velocity scale W - 7. The sole effective 

21 Fluid Mech. 38 
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termination is a t  a density-discontinuity surface in a multi-layered liquid with 
immiscible components, in which case it may be possible to produce vertical 
sections of a vortex or of vortex pairs approximating in local behaviour to the 
viscous line vortex. 

The vortex pairs observed most commonly are vortex wakes or other cores 
with significant axial motion, but these preserve the principal azimuthal flow 
structure features of the viscous line vortex within half the separation distance 
(2d)  of the cores provided that the diffusion length J(4vt)  < d. There will be 
slow loss of circulation from each core by diffusion of vorticity of opposing sign 
across the plane of symmetry separating the two cores, though this effect will 
be relatively small provided that the individual cores are well separated. How- 
ever, the retarding tangential stress of a viscous line vortex will always be 
important in cases in which the loss of circulation is small; hence the flux of 
angular momentum is not a conserved quantity in individual vortex cores with 
axial flow. 

Xwirling laminar jets 

- 27r(ru), = E ( z ) ,  (rv) ,  = 0,  w, = 0,  where V,  is again the, as yet undetermined, 
volume entrainment per unit length of axis. The axial mass flus is monotone 
increasing (equation (lo)), and from (12) and (13), 

2 r p  r2vw dr = G ,  
0 

where both the flux of angular momentum G and the flow force F are conserved 
quantities (or flow invariants); longitudinal viscous diffusion terms have been 
neglected on the assumption a small. The order-of-magnitude analysis has 
shown already, equation (8), that p cannot exceed pw2 appreciably: hence from 
relations ( 16), 

and 

R3V W N Glp and R2W2 - F/p,  

V G  
W " Z '  

Both G and F are conserved in a swirling jet, and it follows that the local 
dimensionless parameter GIRF decreases monotonically with increasing down- 
stream distance from its source value G / R s F ;  this parameter, appropriately 
termed the swirl number? of the flow, is a ratio of azimuthal to axial velocity 
scales at  entry, and characterizes the effects of axial rotation in swirling core 
flows.? In strongly swirling flows, from (1  l ) ,  P N p V2 and 

P v2 2 

p W 2 " F N  (&) 
t Two different parameters have been used to characterize the effects of rotation on 

flows. (i) The Rossby number is the ratio of relative inertial to Coriolis forces in a fluid 
body undergoing rotation as a whole; or, equivalently, the ratio of relative velocity in 
a plane normal to the appropriate axis of rotation to a typical transverse velocity of back- 
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The azimuthal velocity cannot exceed the axial velocity in order of magnitude 
because of the close pressure coupling: hence the swirl number cannot exceed 
order unity in unconfined core flow, except possibly in some neighbourhood of 
a free axial stagnation point, and the disturbance pressure and axial momentum 
flux make comparable contributions to the flow force. Quite large adverse 
gradients of axial pressure are observed in strongly swirling jets, caused by 
progressive lateral diffusion of angular momentum with consequent reduction 
in magnitude of the perturbation pressure deficiency a t  the axis, and at  swirl 
parameters a little larger than unity a free stagnation point appears on the axis 
of a swirling jet followed by a downstream bubble of recirculating flow (Gore & 
Ranz 1964); such cores will normally be turbulent. ‘Breakdown’ of a swirling 
jet, associated with stagnation and reversed flow near the axis, causes a sudden 
increase in jet width and hence a sudden reduction in the local swirl number, and 
may be regarded broadly as confirmation of the deduction that a free swirling 
jet cannot support azimuthal velocities much in excess of its axial velocity. 

Typical scales for swirling jets are obtained from (6), (7) and (17) as 

with total Reynolds number (F/pv2)&. In strongly swirling jets P - p V 2  plays 
an essential dynamical role; but in weakly swirling jets p V 2  < P N pU2,  and 
from (18), 

or 

R U V  G 
Z W W RF’ 
- -->-A,- 

-“(q4 RF pv2 < 1. 

Thus the dynamical role of swirl in a jet always suffers progressive decrease in 
importance with increasing axial distance, and will disappear by the neigh- 
bourhood 

beyond this the flow degenerates to forced convection of angular momentum in 
a weakly swirling (but otherwise unmodified) jet. Provided that 

x ,., R(F/pv2)4 - G/pv2; 

R, > k(Glpv2) (F /pv2) - -~ ,  

where R, corresponds with the source radius and k is a constant of order unity, 
a jet will exhibit weak swirl throughout; this case has been treated by Gortler 

ground rotation in this plane. The Rossby number provides a measure of the constraint 
on an interior flow due to the rotation of its whole environment; thus balanced geostrophic 
flow with velocity normal to the pressure gradient is a typical small Rossby number flow, 
and these flows have 8 general tendency to be two-dimensional. (ii) The swirl parameter, 
usually measured as the local ratio of typical transverse and axial velocity components 
in a swirling jet or wake in a rotation free environment, provides a measure of the dis- 
ruptive effect of axial swirl, including the tendency to increased rates of spread and the 
development of flow reversal near the axis of the core. Some authors have identified the 
swirl parameter as an inverse Rossby number, but this has disadvantages as the original 
Rossby number characterizes the effect of external rotation on a flow, while the (inverse 
of the) swirl parameter characterizes the effect of internal rotation. 

21-2 
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(1954) as a problem of forced convection reducing to the solution of a single 
equation for the azimuthal flow. Loitsianskii (1953) has treated the more interest- 
ing case in which R, falls short of k(Glpv2) (F/pv2)-* sufficiently to produce a 
region of pressure coupled flow; the solution is developed as a power series 
expansion in 2-1 (of which the coefficients are profile functions of r/x) up to first- 
order effects of swirl, but the method applies only to small modification of the 
axial flow by swirl as the permissible increase in GIR,F is limited strictly by the 
requirements of convergence. A treatment by Lee (1965) for the turbulent 
swirling jet extends rather approximately to somewhat higher values of GIR,F. 
No satisfactory theory exists for the most interesting case of GIR,F N 1, but 
experimental studies on the structure of turbulent swirling jets have been 
reported by Rose (1962) and on stagnation and core recirculation by Gore & 
Ranz (1964), and Chigier & Beer (1964). 

If fluid in rigid body rotation is emitted from a pipe spinning about its axis, 
the emerging core is sheathed in a vortex sheet which exactly counterbalances 
the core circulation and which develops to form an annular mixing layer in 
which there is decreasing circulation with increasing radius and hence likely to 
be turbulence. We do not expect to generate a vortex jet in this way, of course, 
because of energy and angular momentum limitations in the outer flow, and it 
seems as though there is no practical way of generating even a vortex jet pair 
in a still and irrotational environment. 

Draining or sink vortices 
If initially irrotational fluid were drained slowly through an orifice from a vessel 
the flow would remain irrotational everywhere except for fluid which has passed 
into a viscous layer near a wall. Vortex formation would then be rare and would 
arise only through the convection of a separated boundary layer towards the 
outlet, and the draining flow would normally approximate to that of an ideal 
fluid. I n  fact, however, all fluids possess the rotation of the earth, and in addition 
most have filling or other vorticity stronger by an order of magnitude or more. 
In  such circumstances a rapid outflow usually produces no observable amplifica- 
tion of vorticity, but a slow outflow generates a well-defined draining vortex 
(Andrade 1963). The Rossby number, which may be interpreted here as the ratio 
of the appropriate component of disturbance vorticity to the background vor- 
ticity due to rotation of the fluid body as a whole, provides a measure of the 
capacity for vortex formation, and in general the smaller the Rossby number (or 
the slower the outflow) the more vigorous the draining vortex that will form in 
a given time. Thus the formation of a draining vortex depends expressly on the 
pre-existence of a vorticity distribution, and vortex formation is unlikely in 
a really still environment. 

The flux of angular momentum is no longer a flow invariant when there is net 
circulation K ,  = K(m, x )  about the core, and the scaling in a sink vortex will be 
different from that of a swirling jet. Using Stokes’s theorem, the difference in 
circulation measured in circular paths ( r ,x l )  and (r ,z2)  is 

~ ( r ,  zl) - K(r ,  x g )  = sl curl v .  nciX = o . n cis, s 
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where the surface integral is evaluated over the section of circular cylinder with 
outward normal n terminated by the two circulation paths (at z1 and x z ) .  The 
change in circulation with distance corresponds to the lateral divergence of 
vortex tubes, and taking r large we see that the total circulation K(co, x )  of a 
vortex core in an irrotational environment is independent of axial distance x and 
constitutes the second flow invariant for the system. Thus, subject to the earlier 
assumption of a dynamically significant pressure field, the R, U and W scales are 
the same as those for the swirling jet, relations (19), but the invariant circulation 
K ,  N RV,  and hence 

F KZ 
PV 

and P N -2p22. 

Strong vortices have P N p W 2  or equivalently V N W ,  and hence 

and for narrow vortices 

Narrow vortex cores in which the circulation is an increasing function of radius 
exert a stabilizing influence on their axial core flow and remain laminar to 
rather higher Reynolds numbers, (F/pvZ)*, than comparable jets (in accord with 
the strong laminar vortices commonly observed). A given vessel of fluid in a speci- 
fied state of rotation (K,)? should exhibit some or all of the following modes of 
draining, though it must be noted that such draining flow is at most quasi-steady. 
(i) (3’/pv2)4 3 K,/v, 1: the ambient vorticity is insufficient to constrain the rapid 
outflow into a narrow vortex and the flow approximates t o  three-dimensional 
sink flow. (Note that the condition (F/pv2)* 9 1 is not of itself sufficient to ensure 
a narrow draining flow.) (ii) (F/pv2)+ - K,/v 9 1: slower outflow will generate 
a strong narrow draining vortex, and the necessary flow force is determined by 
the available vorticity. (iii) K,/v 9 (F/pv2)4 > 1 : although there is ample vor- 
ticity, the rate of outflow is insufficient to maintain a pressure-coupled con- 
centrated vortex. (Reduction of the rate of extraction below an established 
draining vortex will often destroy the concentrated vortex.) (iv) (F/pv2)4  < 1 : 
very slow outflow into a weak sink will produce only a modified sink flow. 

This discussion serves to emphasize a feature of vortex flow that is perhaps 
surprising to the bath-time observer, but well known to those who have pursued 
more careful experiments : that the generation and maintenance of stable vortices 
may require quite careful selection of the operating conditionst (e.g. Turner 
1966). 

t We recdl that K ,  must be measured in a path lying outside the core but not at 
r / z  + co; even though a stationary vessel of fluid stirred into rotation has zero circulation 
K ,  in circuits taken round its wall, it will have non-zero circulation K ,  in suitably chosen 
interior circuits. 

$ I n  many circumstances the draining flow force may adjust as a consequence of 
modScations in the flow itself to a value appropriate to the existing circulation; the 
formation of an air core may possibly be such an adjustment. 
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Vortex jets and plumes can be generated in a rotating environment (Herbert 
1965 ; Morton 1963) under rather, limiting conditions, but are experimentally 
more diflicult to handle than draining vortices. A series of studies by Long (1956, 
1958, 1961) is amongst the more detailed of a rather variable range of theoretical 
and experimental investigations of draining vortices and provides some broad 
confirmation of the foregoing classification of flow regimes in terms of the non- 
dimensional parameter (K,/v) (F/pv2)-g = K,(F/p)-*, which might be termed 
the circulation number. These experiments were carried out in cylinders of water 
brought initially to a state of slow rigid body rotation and then drained through 
an outlet on the axis of rotation at  an end plate. Long characterized his rate of 
draining by a so-called ‘Rossby number’ (actually the ratio of volume efflux to 
product of tank radius by circulation measured at the tank wall, which is not a 
Rossby number in the sense defined above, and in particular cases may be 
smaller even by orders of magnitude; thus doubling the tank radius with- 
out other change for a concentrated draining vortex reduces Long’s parameter 
by almost one order of magnitude for fixed rate of efflux). Long (1956) observed 
that strong sinks at ‘Rossby numbers ’ exceeding about 0.3 produced three- 
dimensional draining flows in which fluid was withdrawn from all parts of 
the cylinder, but that somewhat weaker sinks extracted fluid from a central 
core only, the diameter of which decreased progressively until intense narrow 
draining vortices were formed over weak sinks below values of about 0-02 (Long 
1958); no observations were reported below 0.006. 

Long (1958, 1961) noted from his experiments that once a quasi-steady con- 
centrated draining vortex had developed from the initial slow rigid-body rotation 
of a tank of water, the vorticity in the core exceeded that in the remainder of 
the tank by orders of magnitude, so that circulation measured in axially sym- 
metric circuits outside the core changed relatively little with increasing radius. 
Although the ambient fluid still possesses axial vorticity, this is dominated by 
the high level of core vorticity; thus the draining vortex should be regarded as 
a high Rossby number flow in which the core has derived its vorticity originally 
from the ambient rotation but is no longer significantly affected by it in the 
quasi-steady state. On this basis Long developed a similarity solution for con- 
centrated viscous vortices valid supposedly for both source and sink flows 
having non-zero circulation Km in an otherwise irrotational environment. How- 
ever, we have noted already that it is practically impossible to produce a jet 
with net circulation in an otherwise still environment, and hence Long’s solution 
can have physical validity only for draining vortices in an irrotational or weakly 
rotational environment. 

Long’s similarity solution contains several possibly paradoxical features that 
may merit further discussion. Although the solution is asymptotic in character, 
it takes the form of a one-parameter family with infinitely many velocity profile 
shapes, characterized by the circulation numbert K,(F/p)-* which has already 
been shown to vary over a range from zero up to O( 1) but is never large. This is 
perhaps surprising, as asymptotic regimes of flow normally correspond regions 

t Long’s parameter M corresponds to the inverse square of our circulation number, 
and he finds solutions only for values M > 3.65. 
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of particular (and usually simple) force balance, whereas the circulation 
number (K,/v) (F/pvz)-* provides a measure of the dynamical role of the centri- 
fugal pressure perturbation in the flow and the entire force balance of the flow 
changes as the circulation number is increased from zero to O( 1). The family of 
similarity solutions includes such manifestly different flows apparently because 
the simple jet (physically realizable), the vortex jet (unrealizable) and the strong 
draining vortex (realizable) all happen to have conical shape R cc 8, with small 
angle of spread R/Z provided that the Reynolds number (F/pv2)4 is sufficiently 
large. However, unconfined sink flows are not narrow in the absence of rotation, 
and it appears that weak draining vortices at small circulation numbers (though 
not necessarily small K,/v) must lie outside Long’s family of similar flows. The 
mass flux in each of the remaining similarity flows, 

r w  
M = 21rpJ wr dr N 21rpv8, 

0 

is monotone increasing in magnitude with distance and zero at  the virtual source. 
These are directed flows, in which the virtual origin is effectively a source of 
flow force and not of mass, though it seems reasonable to classify them as source 
vortices if there is net outflow ( M  > 0) and sink vortices for net inflow ( M  < 0) 
at corresponding actual sources of finite radius. Source vortices may have an 
inner core of weak reversed flow with slow loss of fluid to the enveloping outflow 
(and it may be noted that the zero for the radial component tends to lie outside 
the zero for the axial component of velocity in the solutions with strongest 
backflow presented by Long (1961)); the increase with distance z of total mass 
flux in a source vortex may be associated with entrainment of ambient fluid. 
Reference to Long’s solution profiles shows clearly that all of his numerical 
solutions represent source vortices or vortex jets, and that the net forward mass 
flux is appreciable even in the case of strongest axial back flow. Thus the con- 
straints imposed by the similarity approach seem to be incompatible with 
draining vortex flow and to be satisfied only by vortex jets (which are of limited 
physical significance). 

It is possibly worth noting that the contribution to flow force from the centri- 
fugal pressure perturbation is everywhere negative, while that from the momen- 
tum flux is positive for both forward and reversed axial flow (since the forward 
transport of forwards momentum and the reverse transport of reversed momen- 
tum both correspond to a forward force). Thus for each value of F we should 
expect (in principle, if not in practice) both a source and a sink vortex; Long also 
found pairs of solutions for each P, though ‘surprisingly’ both appear to be 
source vortices in the cases computed. Thus the pressure and momentum flux 
contributions to the flow force are opposed, and P/pW2 > O(1). Unfortunately 
the methods employed here are not powerful enough to determine whether F 
must necessarily be positive, though this proves to be so in the cases computed 
by Long. 

The draining vortex model proposed by Long represents a steady vortex in an 
otherwise irrotational environment from which vorticity is being extracted con- 
tinuously at  the sink. In practice such vortices normally develop in weakly vorti- 
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cal environments, and concentrated cores with vorticity orders of magnitude 
stronger than ambient seem to develop in the available draining times only when 
the end of the vortex distant from the sink is anchored at a rigid boundary or 
free surface. I n  such circumstances the vortex remains narrow along its length 
and interacts strongly a t  the terminating boundary. Such a sink vortex is easily 
maintained under the balanced effects of inward radial convection (coupled with 
longitudinal stretching) and outward radial diffusion of vorticity in spite of the 
vorticity transport to the sink, as in the Burgers (1948) vortex; but there seems 
to be no comparable mechanism for maintaining source vortices. Although the 
Burgers vortex (consisting of a concentrated core of vorticity in an irrotational 
reversed stagnation point flow; see also Sullivan 1959 and Lewellen 1962) is 
a solution of the full Navier-Stokes equations, it satisfies only inviscid boundary 
conditions at  the base boundary and so falls far short of providing an adequate 
model for vortex termination? a t  a boundary. I n  fact, a t  a rigid boundary, the 
balanced centrifugal pressure field of the vortex core is disrupted in a thin 
terminating boundary layer in which a large radial inflow is driven by the un- 
balanced pressure field. I n  a tank of moderate depth a considerable proportion 
of the fluid to be extracted a t  the sink is likely to enter the core through the 
distant terminating boundary layer, which will consequently exert a very strong 
influence on the structure of the entire vortex. Indeed, the diameter of the vortex 
a t  termination and hence the magnitude of its centrifugal pressure reduction 
depend very largely on the terminating flow, and may to some extent be modified 
by varying the end-wall roughness or configuration. Thus Long’s experimental 
draining vortex may be expected to bear a strong imprint of the flow in the end- 
wall terminating boundary layer, and is likely to show only a limited relationship 
to his similarity solution. 

Vortex and swirling wakes 

The order-of-magnitude analysis for wakes and jets in a uniform main stream of 
steady velocity W, in the direction Oz proceeds like that for a still environment, 
except that there are two distinct scales for the axial component of velocity w; 
as a convective velocity w N W,, and under differentiation w N W ,  the appro- 
priate disturbance velocity scale. For narrow cores we require RIZ < 1, and 
sufficiently far downstream of the wake-producing body or jet orifice the dis- 
turbance velocity is relatively small, or WlW, < 1. It follows, as before, that 
U N R W / Z  and for laminar viscous flow 

where the naturally occurring Reynolds number in this case is based on the 
main stream velocity and terms of relative order W/W, are neglected. For narrow 
cores (RIZ < 1) we require ZWo/v 9 1,  and thus the similarity regimes will occur 

It may be recalled that vortex tubes cannot actually terminate at  a boundary but 
connect into a boundary flow; thus, although the concentrated core terminates at  the 
boundary, its constituent vortex tubelets curve into the terminating boundary Iayer. 
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a t  distances Z 9 v/W, from the virtual source. I n  inany cases the core flow will 
be turbulent, in spite of the stabilizing effect of rotation, as a result of the 
axial flow. I n  strongly rotating laminar cores the centrifugal pressure field 
plays a significant role in the core dynamics (and we shall distinguish cores as 
strong or weak according to whether the axial and azimuthal velocity fields 
are or are not pressure coupled), and 

P - w, v2 - w, w; (24) 

in weakly rotating cores the pressure variations may be neglected with 
consequent decoupling of the axial and azimuthal velocities, and 

V 2  < Wo W(R/Z)2 ,  P N pW, W(R/Z)2.  (25)  

The integral relations for core flows in a parallel stream are 

where viscous terms have been omitted from the integrands since their fractional 
contributions are O(R/Z)2;  equation (11) is unchanged. The circulation K ,  is 
given by 

K ,  = (2nrv), - curlv.ndA, 

where dA is an dement of area of a plane section A of the core. The similarity 
structure may now be determined for swirling wakes and jets in a following 
stream and also for the corresponding vortex flows. 

For swirling cores in a uniform stream ru remains finite, whilst rv and 
(Wo-w)+O as T+OC): hence (27 )  and (28 )  reduce to 

- S A  

or, with additional relative error of order W/Wo, 

2nS,Y {~w,(w, - w) -p> r dr = F ,  

representing the conservation of angular momentum flux and flow force, re- 
spectively, along the core. Hence pR3VW N G and pR2Wo W - F ,  and 
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I n  strongly swirling cores (with P N pW, W and K ,  = 0), 

In  this case the swirl number 

decreases downstream as 2-3, in contrast with the 2-l decay in a still environ- 
ment; however, the role of the centrifugal pressure does not reduce corre- 
spondingly, and initial strong swirl remains strong (in the sense that axial and 
azimuthal velocities are pressure coupled) a t  all distances downstream. We 

131) 
note that 

and it follows that in the region under discussion the swirl number will not 
exceed about one third. After rearrangement of (31) 

P w v 2  F ZW, -1 

m-,-w,-(&)2-py2(Y) ' 

F P(W,G/P)8, (32) 

which may be interpreted as a scale for the drag force of strongly swirling wakes 
or jets in an ambient stream. 

In  weakly swirling cores the flow force contribution from the centrifugal 
pressure is negligible and the core acts as a channel for the forced convection of 
angular momentum. The scales for R, U and W remain as in (30), but 

G 
(33) 

I n  both cases the amplitude of the azimuthal velocity decays downstream with 
lateral viscous growth of the core, but the dynamical role of the centrifugal 
pressure remains unchanged in each similarity regime, and strong swirl (accord- 
ing to our definitions) does not necessarily decay to weak swirl. It may be worth 
noting that although similarity arguments are extremely useful in establishing 
guidelines for certain problems, the flows observed experimentally are often 
intermediate in character between two similarity solutions; Batchelor (1964) 
has given such an intermediate solution for the vortex wake. 

Freely moving bodies in steady motion cannot generate swirling wakes (jets, 
or self-propelled wakes) as this would result in a torque on the body and in its 
continued angular acceleration, though they can produce pairs of wakes with 
equal and opposite fluxes of angular momentum; however, swirling core flows 
can be produced by bodies or sources which are rigidly supported in a stream. 
Steiger & Bloom (1962) have described an integral method of treatment and given 
some approximate solutions for strongly swirling laminar wakes. 

Vortex wakes in otherwise irrotational streams occur commonly in matched 
pairs with finite net energy and angular momentum, and constitute an essential 
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ingredient of aerodynamic lift on moving bodies. In  the early stages of core 
formation the circulation K ,  increases with increasing distance downstream as 
each separated vortex sheet winds up to form 8 core; there is a progressive de- 
crease in core pressure with consequent forward acceleration of the core fluid 
to velocities perhaps considerably in excess of ambient (Hall 1966). When the 
process of core formation has been completed, the circulation remains constant 
with further increase of downstream distance, and in this region of slow lateral 
diffusion the core flow suffers deceleration on account of the decreasing centri- 
fugal pressure deficit. Perhaps further downstream again, vorticity starts to 
diffuse across the plane of symmetry separating the two vortices of the pair, with 
the result that thereafter neither the core circulation K ,  nor the flux of angular 
momentum G are conserved for a single vortex core; and far downstream the 
two vortices very largely overlap and must be treated singly as a vortex line 
doublet. Thus the axial flow in a vortex wake may be in either sense, and there is 
little point in distinguishing between sink and source flows. 

Relations (23) and (24) or ( 2 5 )  apply also to vortex wakes, but as (rw), is non- 
zero the flux of angular momentum is not conserved. Thus a vortex wake is 
characterized by its flow force F and net circulation K,, both of which are con- 
served provided that the companion vortex is sufficiently far off to neglect 
diffusion of vorticity across the mid-plane: in this case the conservation relations 
imply the scaling, 

R2W, W - Flp, RV - K,. (34) 

In strong vortex wakes P - P w , W ,  

and 

which may be interpreted as a scale for the flow force of a vortex wake. The direct 
dependence of flow force on circulation arises from the strong coupling between 
the flow components; it may be noted also that K,/v and (F/pv2)* are effectively 
alternative forms of the total Reynolds number. This similarity regime applies 
only where ZW,/v > 1 and ZW,/v & (K, /v )~ ,  and once achieved it extends in- 
definitely downstream. In weak vortex wakes the azimuthal velocity scales 
with the circulation, but decouples from the remaining components of the flow, 
which scale with the flow force: 

The wake will again be narrow provided that ZWJv & 1 and the disturbance 
velocity will be relatively small (the wake approximation) if F/pv2 < ZW,/v; and 
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the vortex will be weak if the centrifugal contribution to the radial pressure 
gradient is smaller than that due to convection, or 

A solution in closed form for weak trailing vortices has been given by Newman 
( 1959). 

The foregoing discussion of laminar swirling and vortex core flows serves to 
illuminate Reynolds’s (1962) treatment of swirling turbulent wakes. Reynolds 
neglects the pressure field entirely, thereby implicitly restricting his argument to 
weakly swirling flows and ensuring that the axial and azimuthal fields decouple: 
thus his treatment cannot apply to ‘swirl-dominated flows’ a t  all. He imposes 
conservation of linear momentum flux (rather than flow force), whereas the 
flux of simple linear momentum is conserved only in the absence of angular 
momentum flux, which itself is conserved only in the absence of circulation. 
We note also that a self-propelled body in a homogeneous environment cannot 
generate a single swirling wake without suffering progressive angular accelera- 
tion about its line of motion, though a non-lifting body can generate a pair of 
wakes having opposed rotation. A single swirling wake can, however, be 
generated by a ship or other floating body propelled along a density discontinuity 
surface in a laterally inclined state. 
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